首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Absorption spectra of chlorophyll a and b in Lhcb protein environment
Authors:Cinque  Gianfelice  Croce  Roberta  Bassi  Roberto
Institution:(1) Dipartimento Scientifico e Tecnologico, Università degli Studi di Verona, Strada Le Grazie 15, I-37134 Verona, Italy;(2) Max Planck Intitute für Strahlenchemie, Stiftstrasse 34-36, D-45470 Mülheim am der Ruhr, Germany;(3) Dipartimento Scientifico e Tecnologico, Università degli Studi di Verona, Strada Le Grazie 15, I-37134 Verona, Italy
Abstract:The spectral forms of the two chlorophyll species in higher plant Photosystem II antenna proteins have been experimentally determined within their protein environment. Recombinant CP29 and LHC II antenna proteins missing individual chromophores were obtained by over-expression in bacteria without any changing of the primary protein sequence and in vitro reconstitution. Difference absorption spectroscopy with respect to the corresponding proteins binding the complete pigment complement yielded the spectral shape and extinction of single chlorophyll a and b. A functional relation of their absorption was given by Gaussian subband decomposition covering the entire Qx and Qy optical region together with the absolute value of the molar extinction coefficient. With respect to analogous determinations reported in the literature for organic solvents, this information is valuable for further understanding the in-protein chlorophyll excited states and excited state dynamics: in particular, for the calculation of Förster transfer rates by means of chlorophyll–chlorophyll overlap integral employing the Stepanov relation for emission and single chromophore transition energies according to the results of mutational analysis of chlorophyll binding sites Bassi et al. (1999) Proc Natl Acad Sci USA 96: 10056–10061; Remelli et al. (1999) J Biol Chem 274: 33510–33521].
Keywords:chlorophylls  LHC II and CP29 spectroscopy  molar extinction coefficient  spectral form
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号