首页 | 本学科首页   官方微博 | 高级检索  
     


Modeling uptake of cadmium from solution outside of root to cell wall of shoot in rice seedling
Authors:Yanling Zhao  ShenJun Zhang  Na Wen  Changbo Zhang  Jingan Wang  Zhongqi Liu
Affiliation:1.Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province,Zhejiang University,Hangzhou,China;2.Life Science and Technology Center,China Seed Group Co., Ltd.,Wuhan,China
Abstract:Barley (Hordeum vulgare L.) is well known for its relatively high salt tolerance among cereal crops. However, the genetic variation of cultivated barley becomes narrower due to continuous artificial selection and breeding processes. Compared with cultivated barley, wild barley contains wider genetic variation and abundant sources for abiotic stress tolerance, considering as an elite resource for mechanism study on salt tolerance. In this study, Tibetan wild barley accession XZ113 identified with high salt tolerance, was used to investigate ionic responses and to identify proteins involved in salt tolerance in roots and shoots at early stage of salt stress, during 48 h. Exposed to salinity, shoot growth is more sensitive than root growth. Conversely, K/Na ratio in the shoots was larger than that in the roots, and both were above 1.0. Steady-state K+ flux experiment showed XZ113 had a strong K+-retaining ability under salt stress, maybe contributing to its good performance of the absolute growth rate. Proteomic results suggested that monodehydroascorbate reductase and peroxidases related to reactive oxygen species scavenging in the roots and phosphoglycerate kinase, triosephosphate isomerase and sedoheptulose-1,7-bisphosphatase associated with photosynthesis and metabolisms in the shoots, played important roles in salt tolerance at early stage of salinity in wild barley.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号