首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Theory of phase-modulation fluorescence spectroscopy for excited-state processes
Authors:Joseph R Lakowicz  Aleksander Balter
Institution:Department of Biological Chemistry, University of Maryland, School of Medicine, 660 W. Redwood Street, Baltimore, MD 21201, U.S.A.
Abstract:Theory is presented for the analysis of excited-state reactions by fluorescence phase shift and demodulation methods. Initially, a two-state model with spectral overlap is considered to illustrate most simply the effects of excited-state reactions on the expected phase and modulation values. Secondly, a multistate model is described to illustrate the probable effects of a fluorophore interacting with several solvent molecules. We note the following unique features of phase-modulation data expected from a fluorophore whose emission spectrum shifts during the lifetime of the excited state: (1) The modulation frequency dependence of the apparent phase (τp) and modulation (τm) lifetimes of the reacted species is opposite to that of a heterogeneous population of fluorophores. (2) For the reacted species τp > τm. For a heterogeneous sample τp < τm. (3) The phase angle of the reacted species can exceed 90°. For a heterogeneous sample phase angles are always less than 90°. Thus, phase and modulation measurements can distinguish between time-dependent processes and spectral heterogeneity by observation of any feature described above. Additionally: (4) The lifetime of the product species can be measured directly. (5) Reverse relaxation can be identified, and the reverse relaxation rates calculated. (6) The wavelength-dependent phase and modulation data can be used to resolve the individual spectra from a two-state reaction. (7) And finally, under favorable conditions, a two-state excited-stale process can be distinguished from a continuous multiple-state process. In each instance, model calculations are presented to illustrate the unique potentials of phase-modulation fluorometry for investigations of excited-state processes.
Keywords:Fluorescence phase shift  Fluorescence demodulation  Excited-state process  Fluorophore
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号