首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Tempo and mode of hummingbird evolution
Authors:Robert Bleiweiss
Institution:Department of Zoology and the Zoological Museum, University of Wisconsin, Madison, WI 53706, U.S.A.
Abstract:Lack of adequate historical data has hindered understanding of the evolutionary tempo and mode of many ecologically well-characterized avian radiations. DNA hybridization distances among 28 hummingbirds (Trochilidae) were used to establish a timescale for this family's radiation into more than 330 species. Under a variety of analytical assumptions, genetic distances calibrated with a fossil divergence date corrected for incompleteness in the geologic record indicated that all extant hummingbird lineages began to diverge in the Early Miocene, approximately 40 Myr (million years) after the Paleocene date estimated for the divergence of hummingbirds and swifts. The long period prior to the radiation of living forms provides ample time for divergent evolution to produce the large morphological gap that has tended to obscure the sister-relationship of hummingbirds and swifts. The Miocene radiation of extant hummingbird lineages itself began with the divergence of the hermit and nonhermit subfamilies approximately 17 Ma (million years ago), followed by the rapid divergence of two Andean and one principally Central and North American clade at approximately 12 Ma. Younger subsidiary lineages, including ones found mainly in the Andes or in North America, date to the later Miocene-earlier Pliocene, approximately 6 Ma. The DNA hybridization-based chronology thus indicates a protracted, rather than stricdy rapid, radiation. Evidence from a broader spectrum of organisms supports the general pattern that higher taxonomic structure within many extant continental families evolved in the Miocene, suggesting that a common environmental pacemaker initiated radiation in unrelated groups. Compared to those in the Pleistocene, radiations tracing to the Miocene may have depended less on rapid climate cycling than on creation of new habitats by major geologic and climatic upheavals. For extant hummingbirds, a principal cause for their Miocene diversification probably was the ability of the ecologically generalized subfamily of nonhermits to radiate in montane areas created by the Andean and other orogenies. Similar interactions between new habitats and their exploitation by ecological generalists may explain, at least in part, the contemporaneous radiation of Passeriformes, the most diverse avian order.
Keywords:Andes  DNA hybridization  radiation  Miocene  mutualism  Trochilidae  hermits  nonhermits
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号