首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A recessive mutation in the Arabidopsis SSI2 gene confers SA- and NPR1-independent expression of PR genes and resistance against bacterial and oomycete pathogens
Authors:Shah J  Kachroo P  Nandi A  Klessig D F
Institution:Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, 190 Frelinghuysen Road, Piscataway, NJ 08855-8020, USA. shah@ksu.edu
Abstract:The Arabidopsis thaliana NPR1 gene is required for salicylic acid (SA)-induced expression of pathogenesis-related (PR) genes and systemic acquired resistance. However, loss-of-function mutations in NPR1 do not confer complete loss of PR gene expression or disease resistance. Thus these responses also can be activated via an NPR1-independent pathway that currently remain to be elucidated. The ssi2-1 mutant, identified in a genetic screen for suppressors of npr1-5, affects signaling through the NPR1-independent defense pathway(s). In comparison with the wild-type (SSI2 NPR1) plants and the npr1-5 mutant (SSI2 npr1-5), the ssi2-1 npr1-5 double mutant and the ssi2-1 NPR1 single mutant constitutively express PR genes PR-1, BGL2 (PR-2) and PR-5]; accumulate elevated levels of SA; spontaneously develop lesions; and possess enhanced resistance to a virulent strain of Peronospora parasitica. The ssi2-1 mutation also confers enhanced resistance to Pseudomonas syringae pv. tomato (Pst); however, this is accomplished primarily via an NPR1-dependent pathway. Analysis of ssi2-1 NPR1 nahG and ssi2-1 npr1-5 nahG plants revealed that elevated SA levels were not essential for the ssi2-1-conferred phenotypes. However, expression of the nahG transgene did reduce the intensity of some ssi2-1-conferred phenotypes, including PR-1 expression, and disease resistance. Based on these results, SSI2 or an SSI2-generated signal appears to modulate signaling of an SA-dependent, NPR1-independent defense pathway, or an SA- and NPR1-independent defense pathway.
Keywords:systemic acquired resistance  salicylic acid‐independent  pathogenesis‐related  NPR1‐independent
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号