首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Pervasive migration of organellar DNA to the nucleus in plants
Authors:Jeffrey L Blanchard  Gregory W Schmidt
Institution:(1) Department of Botany, University of Georgia, 30602 Athens, GA, USA
Abstract:A surprisingly large number of plant nuclear DNA sequences inferred to be remnants of chloroplast and mitochondrial DNA migration events were detected through computer-assisted database searches. Nineteen independent organellar DNA insertions, with a median size of 117 by (range of 38 to >785 bp), occur in the proximity of 15 nuclear genes. One fragment appears to have been passed through a RNA intermediate, based on the presence of an edited version of the mitochondrial gene in the nucleus. Tandemly arranged fragments from disparate regions of organellar genomes and from different organellar genomes indicate that the fragments joined together from an intracellular pool of RNA and/or DNA before they integrated into the nuclear genome. Comparisons of integrated sequences to genes lacking the insertions, as well as the occurrence of coligated fragments, support a model of random integration by end joining. All transferred sequences were found in noncoding regions, but the positioning of organellar-derived DNA in introns, as well as regions 5prime and 3prime to nuclear genes, suggests that the random integration of organellar DNA has the potential to influence gene expression patterns. A semiquantitative estimate was performed on the amount of organellar DNA being transferred and assimilated into the nucleus. Based on this database survey, we estimate that 3–7% of the plant nuclear genomic sequence files contain organellar-derived DNA. The timing and the magnitude of genetic flux to the nuclear genome suggest that random integration is a substantial and ongoing process for creating sequence variation.Correspondence to: J.L. Blanchard
Keywords:Chloroplast  Mitochondrion  Nucleus  Gene transfer  DNA migration  mRNA  editing  Illegitimate recombination  Nonhomologous recombination  Random integration  End joining  Genomic evolution
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号