首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Volumetric and aerial rates of heterotrophic bacterial production in epi- and hypolimnia: the role of nutrients and system morphometry
Authors:Cimbleris  André C P  Kalff  Jacob
Institution:(1) Present address: Departamento de Meio Ambiente, Furnas Centrais Elétricas S.A., Rua Real Grandeza 219, Rio de Janeiro, RJ, 22283-900, Brazil;(2) Department of Biology, McGill University, 1208 Dr. Penfield Av., Montreal, Quebec, QC, H3A 1B1, Canada
Abstract:Epilimnetic and hypolimnetic bacterial production (BP) were measured once in summer, by the incorporation of 3H] - Leucine in each of 14 Quebec (Canada) lakes varying in nutrient content and morphometry. The epilimnetic and hypolimnetic BP were evaluated at two scales: the common per unit volume and areal (m–2) scale. The per unit volume scale epilimnetic BP was best predicted by total phosphorus (TP, r 2=0.63), and by water residence time (WRT r 2=0.57), with WRT serving as a surrogate for the nutrient and organic matter supply from the catchments. Total phosphorus and lake mean depth (Z m) together explained 79% of the variation in epilimnetic BP (l–1). In contrast, hypolimnetic BP (l–1) was neither linked to nutrients (TP or TN) or dissolved organic carbon (DOC) but only to measures of lake morphometry and best of all to hypolimnetic thickness (Zh; r 2=0.74). With increased Zh, there is an increased dilution of settling organic particles and their nutrients, resulting in a decrease in BP per litre. Conversely, when BP is expressed in areal units (m–2), hypolimnetic production increases with increasing hypolimnetic thickness. Water column thickness is a master variable, which together with Chl a (abundance of particles) determines hypolimnetic BP at the whole system scale even though the trophic status is the best single indicator of epilimnetic BP on a volumetric scale. Conclusions drawn invariably change with the scale of investigation. Moreover, it is clear that lake morphometry has a major impact on BP. A comparison of whole water column integrated BP with literature derived estimates of the equivalent sediment production (m–2) below suggests that if the estimated sediment rates are not complete technique artefacts, they are likely to be an order of magnitude higher than the water column rates (m–2) at the maximum depth sampling sites. The relative importance of the sediments could be expected to rise with a decline in the maximum depth of lakes, characterized by progressively thinner hypolimnia. The present findings point to both a primarily allocthonous fuelling of sediment production and an uncoupling of water and sediment BP.
Keywords:bacterial production  lake morphometry  nutrients
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号