首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The role of polyadenylation signal secondary structures on the resistance of plasmid vectors to nucleases
Authors:Ribeiro Sofia C  Monteiro Gabriel A  Prazeres Duarte M F
Institution:Centro de Engenharia Biológica e Química, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.
Abstract:BACKGROUND: Nuclease degradation of plasmid DNA (pDNA) vectors after delivery and during trafficking to the nucleus is a barrier to gene expression. This barrier may be circumvented by shielding the pDNA from the nuclease-rich cell environment with adjuvants or by using nuclease inhibitors. A different alternative that is explored in this work is to make pDNA vectors more nuclease-resistant a priori. METHODS AND RESULTS: The hypothesis that a significant part of nuclease attack is directed towards certain labile sequences in a pDNA model (pVAX1/lacZ) was first tested. Homopurine-rich tracts in the bovine growth hormone polyadenylation signal (BGH poly A) were identified as labile sequences using S1 nuclease as a probe. Two pDNA variants were then created by replacing the BGH poly A region with the SV40 or a synthetic poly A signal. A study of plasmid degradation in eukaryotic cell lysates and mice plasma showed that the half-life of the supercoiled isoforms of the new vectors was always higher when compared with the control plasmid. An in vitro assay of the reporter beta-galactosidase in transfected CHO cells further showed that gene expression with the new pDNA variants was not affected negatively by the plasmid modifications. CONCLUSIONS: The replacement of labile sequences in plasmid DNA vectors improves resistance towards nuclease attack as shown by the increased half-lives of supercoiled plasmid isoforms incubated with endo/lysosomal, cytoplasmatic and blood plasma enzymes.
Keywords:plasmid DNA  secondary structures  nucleases  biological resistance  BGH polyadenylation signal  non‐viral vectors  gene therapy
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号