首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effects of stimulus duration on neuronal response properties in the somatosensory cortex of the star-nosed mole
Authors:Sachdev R N S  Catania K C
Institution:Division of Life Sciences, University of Texas at San Antonio, San Antonio, TX 78249, USA.
Abstract:Star-nosed moles have a series of mechanosensory appendages surrounding each nostril. Each appendage is covered with sensory organs (Eimer's organs) containing both rapidly adapting and slowly adapting mechanoreceptors and each appendage is represented in primary somatosensory cortex (S1) by a single cortical module. When the skin surface of an appendage is depressed, neurons in the corresponding module in S1 respond in either a transient or sustained fashion. The aim of this study was to characterize and compare the responses of these two classes of neurons to both short (5 or 20 ms) and long (500 ms) mechanosensory stimulation. Activity from neurons in the representation of appendage 11, the somatosensory fovea, was recorded while delivering mechanosensory stimuli to the corresponding skin surface. Transient and sustained neurons had different levels of spontaneous activity and different responses to both short and long mechanosensory stimulation. Neurons with sustained responses had a significantly higher spontaneous firing rate than neurons with transient responses. Transient neurons responded to a 5 ms stimulus with excitation followed by suppression of discharge whereas sustained neurons did not exhibit post-excitatory suppression. Rather, responses of sustained neurons to 5 ms stimuli lasted several hundred milliseconds. Consequently sustained responses contained significantly more spikes than transient responses. These experiments suggest contact to the appendages causes two distinct firing patterns in cortex regardless of the duration of the stimulus. The sustained and transient responses could reflect either the activity of fundamentally different classes of neurons or activity in distinct subcortical and cortical networks.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号