首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Genes required for pathogenicity and hypersensitivity are conserved and interchangeable among pathovars of Pseudomonas syringae
Authors:P B Lindgren  N J Panopoulos  B J Staskawicz and D Dahlbeck
Institution:(1) Department of Plant Pathology, University of California, 94720 Berkeley, CA, USA;(2) Present address: Plant Biology Laboratory, The Salk Institute, 10010 N. Torrey Pines Rd., 92037 La Jolla, CA, USA
Abstract:Summary A group of pathogenicity genes was previously identified in Pseudomonas syringae pv. phaseolicola which controls the ability of the pathogen to cause disease on bean and to elicit the hypersensitive response on non-host plants. These genes, designated hrp, are located in a ca. 20 kb region which was referred to as the hrp cluster. Homologous sequences to DNA segments derived from this region were detected in several pathovars of P. syringae but not in symbiotic, saprophytic or other phytopathogenic bacteria. A Tn5-induced Hrp- mutation was transferred from P. syringae pv. phaseolicola to P. syringae pv. tabaci and to three races of P. syringae pv. glycinea by marker exchange mutagenesis. The resulting progeny were phenotypically Hrp-, i.e. no longer pathogenic on their respective hosts and unable to elicit the hypersensitive response on non-host plants. These mutants were restored to wild-type phenotype upon introduction of a recombinant plasmid carrying the corresponding wild-type locus from P. syringae pv. phaseolicola. The marker exchange mutants of P. syringae pv. glycinea psg0 and Psg5 which carry different avr genes for race specific avirulence did not elicit a hypersensitive response on incompatible soybean cultivars. It appears, therefore, that P. syringae pathovars possess common genes for pathogenicity which also control their interaction with non-host plants. Furthermore, the expression of race/cultivar specific incompatibility of P. syringae pv. glycinea requires a fully functional hrp region in addition to the avr genes which determine avirulence on single-gene differential cultivars of soybean.
Keywords:Pathogenicity  Hypersensitive reaction  Racespecific incompatibility
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号