首页 | 本学科首页   官方微博 | 高级检索  
     


Heparin-binding properties of vitronectin are linked to complex formation as illustrated by in vitro polymerization and binding to the terminal complement complex.
Authors:K H?g?sen  T E Mollnes  M Harboe
Affiliation:Institute of Immunology and Rheumatology, National Hospital, University of Oslo, Norway.
Abstract:Vitronectin (VN, complement S-protein) is a multifunctional protein which participates in cell adhesion, coagulation, fibrinolysis, and protection against complement lysis. VN is incorporated into several complexes, such as the terminal complement complex and thrombin-antithrombin III, and is bound to plasminogen activator inhibitor 1. The present study showed that purified VN spontaneously forms polymers of approximately 1000 kDa with a Stokes radius of 10 nm. The polymers are to a varying extent stabilized by disulfide bonds, but are quite stable even after reduction and alkylation, indicating the importance of noncovalent bonds. Plasma VN circulates mainly as a 65/75-kDa monomer containing a cryptic heparin-binding site which is exposed upon a conformational change induced by different stimuli, such as coagulation, heating, adsorption to surfaces, or exposure to acids, urea, or other denaturating agents. In the present study, VN was demonstrated to expose its heparin-binding site and its conformationally dependent 8E6 epitope when incorporated into the terminal complement complex. We suggest that exposure of the heparin-binding site and a putative hydrophobic binding site of VN are linked events dependent upon the same conformational change. In vivo, complex formation probably induces the heparin-binding site. Such a link might also explain why purified heparin-binding VN spontaneously forms polymers. The heparin-binding site may be involved in the elimination of multimolecular complexes containing VN.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号