首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Alteration of endogenous glutathione peroxidase, manganese superoxide dismutase, and glutathione transferase activity in cells transfected with a copper-zinc superoxide dismutase expression vector. Explanation for variations in paraquat resistance
Authors:M J Kelner  R Bagnell
Institution:Department of Pathology, University of California Medical Center, San Diego 92103.
Abstract:Transfection of a human pSV2 (copper-zinc) superoxide dismutase expression vector into murine fibroblasts resulted in stable clones producing increased amounts of copper-zinc superoxide dismutase. A marked increase in endogenous glutathione peroxidase activity (up to 285%) and a smaller increase in glutathione transferase activity (up to 16%) also occurred. Manganese superoxide dismutase activity was decreased in all clones, whereas catalase and NADPH reductase activities were not affected. Alterations in glutathione peroxidase and manganese superoxide dismutase activities correlated with increases in copper-zinc superoxide dismutase activity. Whereas all clones were resistant to paraquat, a direct correlation between copper-zinc superoxide dismutase activity and resistance to paraquat did not exist. In agreement with previous reports clones expressing the highest copper-zinc superoxide dismutase activity did not display the highest resistance to paraquat. However, there was a direct correlation between the increase in glutathione peroxidase activity and paraquat resistance (p less than 0.002).
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号