KINETICS OF SILICIC ACID UPTAKE AND RATES OF SILICA DISSOLUTION IN THE MARINE DIATOM THALASSIOSIRA PSEUDONANA1,2 |
| |
Authors: | David M. Nelson John J. Goering Susan S. Kilham Robert R. L. Guillard |
| |
Abstract: | Tracer techniques using the stable isotope 30Si were used to measure rates of silicic acid uptake and silica dissolution in silicon replete and silicon depleted populations of 2 clones of the marine diatom Thalassiosira pseudonana Hasle & Heimdal. Uptake kinetics were describable using the Michaelis-Menten equation for enzyme kinetics, and no threshold concentration for uptake was evident. The maximum specific uptake rate of the estuarine clone 3H (0.062–0.092 · h?1) was higher than that of the Sargasso Sea clone 13-1 (0.028–0.031 · h?1), but half-saturation constants for uptake by the 2 clones were not measurably different (0.8–2.3 μM for 3H; 1.4–1.5 μM for 13-1). There was little or no light dependence of uptake in populations grown under optimal light conditions prior to the experiment. Exponentially growing populations released silicic acid to the medium by dissolution of cellular silica at rates ranging from 6.5 to 15% of the maximum uptake rate. |
| |
Keywords: | silica silicic acid Thalassiosira uptake kinetics |
|