首页 | 本学科首页   官方微博 | 高级检索  
     


Fluorescence-topographic NSOM directly visualizes peak-valley polarities of GM1/GM3 rafts in cell membrane fluctuations
Authors:Chen Yong  Qin Jie  Chen Zheng W
Affiliation:Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois.
Abstract:Simultaneous fluorescence-topographic nanoscale imaging of cell-surface molecules in the context of membrane ultra-structures has not been reported. Here, near-field scanning optical microscopy (NSOM)-based direct fluorescence-topographic imaging indicated that GM3 rafts/nanodomains (190.0 +/- 49.8 nm ranging 84.5-365.0 nm) were localized predominantly on the peaks of microvillus-like protrusions in the apical membrane of GM3 + Madin-Darby canine kidney cells, whereas GM1 rafts/nanodomains (159.5 +/- 63.8 nm ranging 42-360 nm) were distributed mainly on the slops of protrusions or the valleys between protrusions in the plasma membranes of GM1 + MDCK cells. The data demonstrated that gangliosides polarized not only in a well-known apical-basolateral manner but also in the more microscopic peak-valley manner, implicating unique distribution of GM1 or GM3 in cell-surface fluctuations on the apical membrane of polarized cells. The peak-valley polarities of gangliosides also implicated their different functions relevant to lipid rafts, microvilli, or cellular processes. Importantly, our study demonstrated for the first time that the NSOM-based direct fluorescence-topographic imaging is unique and powerful for elucidating nanoscale distribution of specific cell-surface molecules in membrane fluctuations.
Keywords:near-field scanning optical microscopy  fluorescent quantum dot  fluorescence-topographic imaging  ganglioside GM1  ganglioside GM3  MDCK  polarity
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号