首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Growth hormone-like activities of macrocyclic trichothecenes in in vitro callus induction and growth of four Baccharis species
Authors:J O Kuti  B B Jarvis
Institution:(1) Department of Agronomy and Resource Sciences, Horticulture Research Laboratory, Texas A&I University, 78363 Kingsville, Texas;(2) Department of Chemistry and Biochemistry, University of Maryland, 20742 College Park, Maryland, USA
Abstract:The ability of two plant-produced macrocyclic trichothecenes (baccharinoid B4 and roridin E) to induce callus growth of two trichothecene-producing Baccharis species (B. coridifolia and B. megapotamica) and two nontrichothecene-producing species (B. halimifolia and B. neglecta) was investigated. Roridin E had no effect in the induction of callus of B. coridifolia, a roridin-producing plant, but induced callus of nonroridin-producing plants (B. megapotamica, B. halimifolia, and B. neglecta). Baccharinoid B4 stimulated callus growth of B. megapotamica, a baccharinoid-producing plant, and inhibited growth of B. coridifolia, B. halimifolia, and B. neglecta callus tissues. The ability of roridin E to induce callus was most effective at concentrations of 10–8 and 10–6 M and when synergistically coupled with auxin, 2,4-dichlorophenoxyacetic acid (2,4-D). The ability of baccharinoid B4 to stimulate callus growth appeared to increase with increased concentration in the culture medium. Analysis of callus cultures grown in medium amended with roridin E showed that B4, roridin E, and 8beta-hydroxyroridin E and verrucarols were formed in the tissues but not in the medium. The results of this study indicated that while the callus-inducing ability of roridin E seemed to be nonspecies-specific in nature, the ability of B4 to stimulate callus was a highly species-specific phenomena. Callus-inducing activity of roridin E may depend on the capacity of plant species to transform exogenous roridin E into baccharinoids or other macrocyclic trichothecene derivatives.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号