首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Bacterial Growth Efficiency in a Tropical Estuary: Seasonal Variability Subsidized by Allochthonous Carbon
Authors:A S Pradeep Ram  Shanta Nair  D Chandramohan
Institution:(1) Centre for Ecological Research, Kyoto University, 2-509-3 Hirano, Otsu Shiga, 520-2113, Japan;(2) Biological Oceanography Division, National Institute of Oceanography, Dona Paula, Goa, 403 004, India
Abstract:Bacterial growth efficiency (BGE) is a key factor in understanding bacterial influence on carbon flow in aquatic ecosystems. We report intra-annual variability in BGE, and bacteria-mediated carbon flow in the tropical Mandovi and Zuari estuaries (southwest India) and the adjoining coastal waters (Arabian Sea). BGE ranged from 3% to 61% and showed clear temporal variability with significantly (ANOVA, p < 0.01) higher values in the estuaries (mean, 28 ± 14%) than coastal waters (mean, 12 ± 6%). The greater variability of BGE in the estuaries than coastal waters suggest some systematic response to nutrient composition and the variability of dissolved organic matter pools, as BGE was governed by bacterial secondary production (BP). Monsoonal rains and its accompanied changes brought significant variability in BGE and bacterial productivity/primary productivity (BP/PP) ratio when compared to nonmonsoon seasons in the estuaries and coastal waters. High BP/PP ratio (>1) together with high carbon flux through bacteria (>100% of primary productivity) in the estuarine and coastal waters suggests that bacterioplankton consumed dissolved organic carbon in excess of the amount produced in situ by phytoplankton of this region, which led to the mismatch between primary production of carbon and amount of carbon consumed by bacteria. Despite the two systems being subsidized by allochthonous inputs, the low BGE in the coastal waters may be attributable to the nature and time interval in the supply of allochthonous carbon.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号