首页 | 本学科首页   官方微博 | 高级检索  
     


Ligninolytic activity of Phanerochaete chrysosporium: Physiology of suppression by NH 4 + and l-glutamate
Authors:Patrick Fenn  Suki Choi  T. Kent Kirk
Affiliation:(1) Department of Plant Pathology, University of Arkansas, 72701 Fayetteville, AR, USA;(2) Forest Service, Forest Products Laboratory, U.S. Department of Agriculture, P.O. Box 5130, 53705 Madison, WI, USA
Abstract:Previous research showed that addition of nutrient nitrogen to ligninolytic (stationary, nitrogen-starved) cultures of the wood-decomposing basidiomycete Phanerochaete chrysosporium causes a suppression of lignin degradation. The present study examined early effects on nitrogen metabolism that followed addition of NH4+and l-glutamate at concentrations that yield similar patterns of suppression. Both nitrogenous compounds were rapidly assimilated (>80% in 6 h). Both caused an initial 80% or greater increase in the intracellular glutamate pool and had similar effects in increasing the specific activities of NADP- and NAD-glutamate dehydrogenases and glutamine synthetase. Differences between the effects of added NH4+and glutamate showed that suppression was not correlated with intracellular pools of arginine or glutamine, nor was the maintenance of an elevated glutamate pool required to maintain the suppressed state. While a portion of the initial glutamate suppression could be attributed to an effect on central carbon metabolism through glutamate catabolism by NAD-glutamate dehydrogenase, the long term suppression by glutamate and the suppression by NH4+were more specific. Suppression by NH4+or glutamate in the presence or absence of protein synthesis (cycloheximide) followed essentially identical kinetics during 12 h. These results indicate that nitrogen additions cause a biochemical repression of enzymes associated with lignin degradation. Results are consistent with the hypothesis that nitrogen metabolism via glutamate plays a role in initiation of repression.Non-Standard Abbreviations DMS 2,2-dimethylsuccinate - TCA trichloroacetic acid
Keywords:Wood decay  White-rot fungi  Lignin biodegradation  Fungus physiology  Repression by glutamate  Glutamate dehydrogenase  Glutamine synthetase  Intracellular amino acids
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号