首页 | 本学科首页   官方微博 | 高级检索  
     


Waste biomass of Nostoc linckia as adsorbent of crystal violet dye: Optimization based on statistical model
Authors:Sharma MonaAnubha Kaushik  C.P. Kaushik
Affiliation:Department of Environmental Science and Engineering, Guru Jambheshwar University of Science & Technology, Hisar-125001, India
Abstract:The potential of spent biomass of a hydrogen producing cyanobacterial strain Nostoc linckia from a hydrogen fermentor was studied for decolorization of a tri-phenylmethane dye, crystal violet. The waste cyanobacterial biomass immobilized in calcium alginate was used as a biosorbent and the process variables were optimized for maximum dye removal using the statistical response surface methodology (RSM). Batch mode experiments were performed to determine the kinetic behavior of the dye in aqueous solution allowing the computation of kinetic parameters. Influence of interacting parameters like temperature (25-35 °C), pH (4-8), initial dye concentration (100-200 mg/L) and cyanobacterial dose (0.2-0.4 g) on dye removal were examined using central composite design (CCD) which included two additional levels for each parameter. Second-order polynomial regression model, was applied which was statistically validated using analysis of variance. Ability of the immobilized biomass to decolorize the dye was maximum (72%) at pH 8.0, temperature 35 °C, 200 mg/L initial dye concentration and 0.2 g cyanobacterial dose. Adsorption of the dye on cell surface was further confirmed by scanning electron micrographs of the biomass before and after dye loading. FT-IR studies revealed that decolorization was due to biosorption mediated mainly by functional groups like hydroxyl, amide, carboxylate, methyl and methylene groups present on the cell surface.
Keywords:Nostoc   Tri-phenylmethane dye   Crystal violet   CCD   Spent biomass   Immobilization
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号