首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Genetic Analysis of Metabolic Crosstalk and Its Impact on Thiamine Synthesis in Salmonella Typhimurium
Authors:L Petersen  J Enos-Berlage  and D M Downs
Institution:Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
Abstract:The first five steps in de novo purine biosynthesis are involved in the formation of the 4-amino-5-hydroxymethyl-2-methyl pyrimidine (HMP) moiety of thiamine. We show here that the first enzyme in de novo purine biosynthesis, PurF, is required for thiamine synthesis during aerobic growth on some but not other carbon sources. We show that PurF-independent thiamine synthesis depends on the recently described alternative pyrimidine biosynthetic (APB) pathway. Null mutations in zwf (encoding glucose-6-P dehydogenase), gnd (encoding gluconate-6-P dehydrogenase), purE (encoding aminoimidazole ribo-nucleotide carboxylase), and purR (encoding a regulator of gene expression) were found to affect the function of the APB pathway. A model is presented to account for the involvement of these gene products in thiamine biosynthesis via the APB pathway. Results presented herein demonstrate that function of the APB pathway can be prevented either by blocking intermediate formation or by diverting intermediate(s) from the pathway. Strong genetic evidence supports the conclusion that aminoimidazole ribotide (AIR) is an intermediate in the APB pathway.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号