首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effects of Lipophilic Ions on Outer Hair Cell Membrane Capacitance and Motility
Authors:M Wu  J Santos-Sacchi
Institution:(1) Sections of Otolaryngology and Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA, US
Abstract:The outer hair cell (OHC) from the mammalian organ of Corti possesses a bell-shaped voltage-dependent capacitance function. The nonlinear capacitance reflects the activity of membrane bound voltage sensors associated with membrane motors that control OHC length. We have studied the effects of the lipophilic ions, tetraphenylborate (TPB) and tetraphenylphosphonium (TPP+), on nonlinear capacitance and motility of isolated guinea-pig OHCs. Effects on supporting cells were also investigated. TPB produced an increase in the peak capacitance (Cm pk ) and shifted the voltage at peak capacitance (V pkCm ) to hyperpolarized levels. Washout reversed the effects. Perfusion of 0.4 μm TPB caused an average increase in Cm pk of 16.3 pF and V pkCm shift of 13.6 mV. TPP+, on the other hand, only shifted V pkCm in the positive direction, with no change in Cm pk . The contributions from native OHC and TPB-induced capacitance were dissected by a double Boltzmann fitting paradigm, and by blocking native OHC capacitance. While mechanical response studies indicate little effect of TPB on the motility of OHCs which were in normal condition or treated with salicylate or gadolinium, the voltage at maximum mechanical gain (V δ Lmax ) was shifted in correspondence with native V pkCm , and both changed in a concentration-dependent manner. Both TPB-induced changes in Cm pk and V pkCm were affected by voltage prepulses and intracellular turgor pressure. TPB induced a voltage-dependent capacitance in supporting cells whose characteristics were similar to those of the OHC, but no indication of mechanical responses was noted. Our results indicate that OHC mechanical responses are not simply related to quantity of nonspecific nonlinear charge moved within the membrane, but to the effects of motility voltage-sensor charge movement functionally coupled to a mechanical effector. Received: 14 May 1998/Revised: 24 August 1998
Keywords:: Cochlea —  Gating current —  Tetraphenylborate —  Motility —  Capacitance
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号