首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A charge transfer process in the visual pigments
Authors:Ignacio G Galindo
Institution:(1) The University of Chicago, Committee on Mathematical Biology, Chicago, Illinois;(2) Present address: Seccion de Radiacion Solar, Instituto de Geofisica, UNAM, Ciudad Universitaria, Mexico, D.F., Mexico
Abstract:A physical model that incorporates all the experimental information on the formation of the visual pigment rhodopsin is presented. The visual pigments consist of a chromophore bound to an appropriate protein. Thus rhodopsin (λm 505 mμ) is formed by a Schiff’s base linkage C19H27CH=NH+-opsin (λm 440 mμ) between 11-cis retinal (λm 380 mμ) and the protein opsin (λm 280 mμ). It is found that there exists a red shift in the spectrum of rhodopsin from the Schiff’s base. The model brings an explanation for this red shift. It is shown that such a shift may be due to a charge transfer process (R. S. Mulliken,J. Am. Chem. Soc.,74, 811–824, 1952) between an electron at the double bond of carbons C11−C12 and an atomic orbital of the sulphur present in cysteine. This provides an explanation of the presence of SH-groups in the protein after the absorption of light. A one-electron approximation is used and the dipole momentμ NV ; hence, the oscillator strengthf of the transitionNV is estimated and compared with the experimentally determined extinction coefficient ∈m by mixing 3.5×10−3 M of 11-cis retinal with 8.3×10−5 M of cysteine at pH ranges 6 through 8. Reasonable agreement is found. Solvent, concentration and temperature dependence are shown also.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号