首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Altered Expression and Regulation of the α5β1 Integrin–Fibronectin Receptor Lead to Reduced Amounts of Functional α5β1 Heterodimer on the Plasma Membrane of Senescent Human Diploid Fibroblasts
Authors:Qubai Hu  Elena J Moerman  Samuel Goldstein
Institution:Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Department of Medicine, John L. McClellan Memorial Veterans Hospital, Little Rock, Arkansas, 72205
Abstract:Previously, we reported that fibronectin (FN) mRNA was overexpressed in normal late-passage (old) and prematurely senescent Werner syndrome (WS) fibroblasts when compared to normal early-passage (young) cells (Muranoet al. Mol. Cell. Biol.11, 3905–3914, 1991). Therefore, we investigated the expression and function of the α5β1 FN receptor (FNR), a member of the integrin family, in young and senescent normal and WS cells. Levels of the α5 polypeptide, a unique subunit of the α5β1 FNR, were reduced in old cells, so that old cells produced fewer α5β1 heterodimers on the plasma membrane. The reduced levels of α5 polypeptide might be due to deficient translation and/or nonfunctional α5 mRNA since increased mRNA levels and unchanged polypeptide turnover were found in these cells. Moreover, the α5 polypeptides on the senescent cell surface were less accessible to monoclonal antibody, suggesting sequestration of this subunit, which might affect receptor–ligand binding. In contrast, β1 subunit, a common subunit for the β1 integrin subfamily, showed relatively stable levels during cellular aging, but underwent slower intracellular processing. Old cells exhibited reduced attachment to FN, which might be in part mediated by the α5β1 FNR. More importantly, old cells were deficient in response to FN-induced DNA synthesis and cell proliferation. This induction was pronounced in young cells, however, and could be completely inhibited by α5-specific monoclonal antibody, indicating mediation by α5β1 FNR. WS cells behaved like normal old cells in the above assays. Our results indicate that reduction of α5β1 FNR expression and its mediated effects are associated with the senescent phenotype of fibroblasts. These findings provide new insight into the mechanism(s) of replicative senescence in human fibroblasts.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号