首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Cell division and the microtubular cytoskeleton]
Authors:K Izutsu
Institution:Department of Pathology, Mie University School of Medicine.
Abstract:Kinetochore microtubules result from an interaction between astral microtubules and the kinetochore of the chromosomes after breakdown of the nuclear envelope at the end of prophase. In this process, the end of a microtubule projecting from one of the polar regions contacts the primary constriction of a chromosome. The latter then undergoes rapid poleward movement. Concerning the mechanism of anaphase chromosome movement, the motive force for the chromosome-to-pole movement appears to be generated at the kinetochore or in the region very close to it. It has not been determined whether chromosomes propel themselves along stationary kinetochore microtubules by a motor at the kinetochore, or they are pulled poleward by a traction fiber consisting of kinetochore microtubules and associated motors. As chromosomes move poleward coordinate disassembly of kinetochore microtubules might occur from their kinetochore ends. In diatom and yeast spindles, elongation of the spindle in anaphase (anaphase B) may be explained by microtubule assembly at polar microtubule ends in the spindle mid-zone and sliding of the antiparallel microtubules from the opposite poles. The sliding force appears to be generated through an ATP-dependent microtubule motor. In isolated sea urchin spindles, the microtubule assembly at the equator alone might provide the force for spindle elongation, although, in addition, involvement of microtubule sliding by a GTP-requiring mechanochemical enzyme cannot be excluded. Discussions were made on possible participation in anaphase chromosome movement of such microtubule motors as dynein, kinesin, dynamin and the claret segregation protein.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号