首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Identification of antigenic Edwardsiella tarda surface proteins and their role in pathogenesis
Authors:Jong Earn Yu  Ah Young Yoo  Kyoung-Hwa Choi  Jaeho Cha  Inseok Kwak  Ho Young Kang
Institution:1. Department of Microbiology, Pusan National University, Busan 609-735, South Korea;2. Department of Biological Sciences, Silla University, Busan 617-736, South Korea
Abstract:Edwardsiella tarda causes an infectious fish disease called edwardsiellosis. Several outer membrane proteins (OMPs) are associated with virulence factors and are attractive as vaccine candidates. In this study, 4 immuno-reactive OMPs of E. tarda were detected using anti-sera from flounder infected with E. tarda. Using matrix-assisted laser desorption/ionization mass spectrometry analyses, 2 of the 4 OMPs were identified as OmpA and murein lipoprotein (Lpp), which are highly conserved surface proteins in gram-negative bacteria. For further characterization of these surface proteins, we generated ompA- and lpp-inactivated mutants by insertion of a kanamycin cassette in the corresponding genes, and named these mutants E. tarda CK99 and CK164, respectively. As expected, immuno-reactive OmpA and Lpp proteins were absent in E. tarda CK99 and CK164, respectively, confirming that OmpA and Lpp are antigenic surface proteins. Interestingly, the LD50 value of E. tarda CK164 in fish (2.0 × 108 colony-forming unit CFU]/fish) was greater than that of the parental strain (3.0 × 107 CFU/fish). The LD50 of E. tarda CK99 did not differ from that of its parental strain. After administering attenuated E. tarda CK164 to fish, we monitored the E. tarda-specific immune response profile. We observed that the E. tarda-specific serum IgM titer increased in a time-dependent manner, and was much higher than the value observed after the administration of a heat-killed E. tarda control. Moreover, fish vaccinated with E. tarda CK164 were 100% protected when challenged by CK41, a pathogenic strain. Our results suggest that E. tarda CK164 can potentially be used for developing an effective live attenuated vaccine for edwardsiellosis that can be applied in the aquaculture industry.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号