首页 | 本学科首页   官方微博 | 高级检索  
   检索      


CYP86A33-Targeted Gene Silencing in Potato Tuber Alters Suberin Composition,Distorts Suberin Lamellae,and Impairs the Periderm's Water Barrier Function
Authors:Siddhartha Dutta  Sasmita Mohanty  Baishnab C Tripathy
Institution:School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
Abstract:Suberin is a cell wall lipid polyester found in the cork cells of the periderm offering protection against dehydration and pathogens. Its biosynthesis and assembly, as well as its contribution to the sealing properties of the periderm, are still poorly understood. Here, we report on the isolation of the coding sequence CYP86A33 and the molecular and physiological function of this gene in potato (Solanum tuberosum) tuber periderm. CYP86A33 was down-regulated in potato plants by RNA interference-mediated silencing. Periderm from CYP86A33-silenced plants revealed a 60% decrease in its aliphatic suberin load and greatly reduced levels of C18:1 ω-hydroxyacid (approximately 70%) and α,ω-diacid (approximately 90%) monomers in comparison with wild type. Moreover, the glycerol esterified to suberin was reduced by 60% in the silenced plants. The typical regular ultrastructure of suberin, consisting of dark and light lamellae, disappeared and the thickness of the suberin layer was clearly reduced. In addition, the water permeability of the periderm isolated from CYP86A33-silenced lines was 3.5 times higher than that of the wild type. Thus, our data provide convincing evidence for the involvement of ω-functional fatty acids in establishing suberin structure and function.Periderm, the boundary tissue that replaces the epidermis in the secondary organs of plants, provides efficient protection against dehydration, UV radiation, and pathogens (Esau, 1965). Periderm is regularly found in the bark of woody plants, but herbaceous plants may also form a well-developed periderm in roots, tubers, and the oldest portions of stem. The periderm has been widely studied in potato (Solanum tuberosum) tubers because of the latter''s great agronomic significance (Schmidt and Schönherr, 1982; Vogt et al., 1983; Lulai and Freeman, 2001; Sabba and Lulai, 2002). Shrinkage and flaccidity occur in tubers if the protection afforded by the periderm against water loss is compromised (Lulai et al., 2006). Suberin and waxes embedded into the suberin matrix are considered essential for periderm imperviousness (Franke and Schreiber, 2007). Chemically, suberin is a complex lipid polymer consisting of a fatty acid-derived domain (aliphatic suberin) cross-linked by ester bonds to a polyaromatic lignin-like domain (aromatic suberin; Kolattukudy, 2001; Bernards, 2002; Franke and Schreiber, 2007). Aliphatic suberin has been widely analyzed in potato periderm (Kolattukudy and Agrawal, 1974; Graça and Pereira, 2000; Schreiber et al., 2005). The main monomers released from potato aliphatic suberin are a mixture of ω-hydroxyacids and α,ω-diacids with chain lengths ranging from C16 to C28 (mainly C18), together with glycerol. Small amounts of monofunctional fatty acids, alcohols, and ferulic acid are also released. Waxes are complex mixtures of lipids extractable with chloroform that in potato periderm consist mostly of linear very-long-chain aliphatics up to C32 (Schreiber et al., 2005). Suberin is deposited in the cell wall as a continuous deposit or secondary cell wall that overlays the polysaccharide primary cell wall from the inside (Esau, 1965). These suberin deposits appear under the transmission electron microscope (TEM) as regularly alternating opaque and translucent lamellae (Schmidt and Schönherr, 1982). Although several molecular models for suberin have been proposed (Kolattukudy, 1980; Bernards, 2002; Graça and Santos, 2007), how the suberin and wax components are organized in the lamellated suberin secondary cell wall is a matter of debate (Graça and Santos, 2007). Moreover, to what extent suberin and wax deposition and composition determine sealing properties of periderm still remains unclear (Schreiber et al., 2005). Several studies confirm the importance of waxes for the diffusion barrier (Soliday et al., 1979; Vogt et al., 1983; Schreiber et al., 2005), but the significance of aliphatic suberin has hardly been investigated at all. Interestingly, an Arabidopsis (Arabidopsis thaliana) knockout mutant for the GLYCEROL-3-PHOSPHATE ACYLTRANSFERASE5 gene (GPAT5) with altered suberin showed higher tetrazolium salt permeability in the seed coat (Beisson et al., 2007).ω-Hydroxylation of fatty acids, a reaction carried out in plants by cytochrome P450 monooxygenases, is a crucial step in the biosynthesis of plant biopolymers (Kolattukudy, 1980; Nawrath, 2002). The Arabidopsis mutant lacerata, which shows phenotype defects compatible with a cutin deficiency, is defective in CYP86A8 encoding a fatty acid ω-hydroxylase (Wellesen et al., 2001). The aberrant induction of type three genes1 (att1) mutant, showing an altered cuticle ultrastructure and a higher transpiration rate than wild type, is defective in CYP86A2 and contains reduced amounts of ω-functionalized cutin monomers (Xiao et al., 2004). Moreover, a genome-wide study of cork oak (Quercus suber) bark highlighted a member of the cytochrome P450 of the CYP86A subfamily as a strong candidate gene for aliphatic suberin biosynthesis (Soler et al., 2007); and a role for CYP86A1 in the biosynthesis of suberin has recently been confirmed in the primary root of Arabidopsis knockout mutants (Li et al., 2007; Hofer et al., 2008). However, how the lack of fatty acid ω-hydroxylase activity may affect the structural features and sealing properties of suberin in periderm cell walls has not been documented.To provide experimental evidence of the role of CYP86A genes in periderm fine structure and water transpiration properties, especially quantitative permeability studies so far unexplored in Arabidopsis, we followed a strategy based on the potato (cv Desirée). The potato is a model of choice for such studies because transgenic plants can be produced in reasonable time and sufficient amounts of periderm can easily be obtained from tubers for chemical and physiological studies (Vogt et al., 1983; Schreiber et al., 2005). Based on the CYP86A gene that was highlighted in cork oak periderm as a strong suberin candidate for aliphatic suberin biosynthesis, we isolated the putative ortholog in potato and used a reverse genetic approach to analyze the effects of down-regulation on the chemical and ultrastructural features of suberin and on the physiological properties of the tuber periderm. Our findings indicate that down-regulation of CYP86A33, as this gene was designated, results in a strong decrease of the ω-functionalized monomers in aliphatic suberin, which are necessary for the suberin typical lamellar organization and for the periderm resistance to water loss.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号