首页 | 本学科首页   官方微博 | 高级检索  
     


Antiproliferative Effect of Ascorbic Acid Is Associated with the Inhibition of Genes Necessary to Cell Cycle Progression
Authors:Sophie Belin  Ferdinand Kaya  Ghislaine Duisit  Sarah Giacometti  Joseph Ciccolini  Michel Fontés
Affiliation:1. EA 4263, Therapy of Genetic Disorder, Faculté de Médecine de la Timone, Marseille, France.; 2. UPRES EA 3286, Laboratory of Pharmacokinetic and Toxicokinetic, Faculté de Pharmacie, Marseille, France.;Istituto Nazionale Tumori, Italy
Abstract:

Background

Ascorbic acid (AA), or Vitamin C, is most well known as a nutritional supplement with antioxidant properties. Recently, we demonstrated that high concentrations of AA act on PMP22 gene expression and partially correct the Charcot-Marie-Tooth disease phenotype in a mouse model. This is due to the capacity of AA, but not other antioxidants, to down-modulate cAMP intracellular concentration by a competitive inhibition of the adenylate cyclase enzymatic activity. Because of the critical role of cAMP in intracellular signalling, we decided to explore the possibility that ascorbic acid could modulate the expression of other genes.

Methods and Findings

Using human pangenomic microarrays, we found that AA inhibited the expression of two categories of genes necessary for cell cycle progression, tRNA synthetases and translation initiation factor subunits. In in vitro assays, we demonstrated that AA induced the S-phase arrest of proliferative normal and tumor cells. Highest concentrations of AA leaded to necrotic cell death. However, quiescent cells were not susceptible to AA toxicity, suggesting the blockage of protein synthesis was mainly detrimental in metabolically-active cells. Using animal models, we found that high concentrations of AA inhibited tumor progression in nude mice grafted with HT29 cells (derived from human colon carcinoma). Consistently, expression of tRNA synthetases and ieF2 appeared to be specifically decreased in tumors upon AA treatment.

Conclusions

AA has an antiproliferative activity, at elevated concentration that could be obtained using IV injection. This activity has been observed in vitro as well in vivo and likely results from the inhibition of expression of genes involved in protein synthesis. Implications for a clinical use in anticancer therapies will be discussed.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号