首页 | 本学科首页   官方微博 | 高级检索  
     


Cross-linked collagen surface for cell culture that is stable,uniform, and optically superior to conventional surfaces
Authors:Jeffrey D. Macklis  Richard L. Sidman  H. David Shine
Affiliation:(1) Department of Neuroscience, Children’s Hospital, 02115 Boston, Massachusetts;(2) Department of Neuropathology, Harvard Medical School, 02115 Boston, Massachusetts
Abstract:Summary A new type of collagen surface for use with cultures of peripheral nervous system cells is described. Collagen is derivatized to plastic culture dishes by a cross-linking reagent, 1-cyclohexyl-3-(2-morpholinoethyl)-carbodiimide-metho-p-toluenesulfonate (carbodiimide), to form a uniform and durable surface for cell attachment and growth that allows dry storage, long-term culture, and improved microscopy. Surfaces of collagen derivatized to plastic were compared to surfaces of adsorbed or ammonia-polymerized collagen in terms of collagen binding and detachment, growth by dorsal root ganglion cells, and electron microscopy appearances. Derivatized collagen surfaces retained more collagen and showed much less evidence of degradation and cellular damage over periods of many weeks than did conventional adsorbed surfaces. Long-term survival of cells on derivatized collagen was far superior to that on the other surfaces, with almost 90% of cultures still viable after 10 wk. Transmission electron microscopy showed an organized layer of single fibrils that supported cell growth well, and scanning electron microscopy demonstrated an increased uniformity of derivatized collagen surfaces compared to ammoniated collagen surfaces. Applications for this improved substrate surface are discussed. This work was supported by the Leopold Schepp Foundation, the Dysautonomia Foundation, National Institutes of Health Grants NS14768 and NS11237, and Institutional Core Grant HD06276.
Keywords:collagen  dorsal root ganglia  culture system  attachment and growth surface  substrate surface  carbodiimide
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号