首页 | 本学科首页   官方微博 | 高级检索  
     


Mapping of Escherichia coli RNA polymerase binding sites on 2-micrometers DNA from Saccharomyces cerevisiae. Heterogeneity within the inverted duplication and evidence for an eukaryotic invertible DNA sequence.
Authors:H D Royer  C P Hollenberg
Affiliation:Max-Planck-Institut für Biologie, Abt. Beermann Spemannstrasse 34, D-7400 Tübingen, Federal Republic of Germany
Abstract:The 2-μm DNA plasmids from Saccharomyces cerevisiae strain H1 and strain HQ/5C were analyzed by electron microscopy for the presence of Escherichia coli RNA polymerase binding sites. On native 2-μm DNA isolated from strain HQ/5C five RNA polymerase binding sites were detected. One further site was mapped on cloned 2-μm DNA type 23 from S. cerevisiae strain H1. This additional site is located at a distance of 2.15 kilobases from EcoRI site B inside one of the inverted duplication (id) sequences. No such binding site could be detected in the other id sequence of the type 23 molecule, thus indicating that the two id sequences of strain H1 differ in at least one short region. The location of the id sequence carrying the RNA polymerase binding site was analyzed in native 2-μm DNA isolated from strain H1 and found to be present on HindIII fragment 2 and absent from HindIII fragment 5. This indicates that at least a part of the id sequences has a fixed position with respect to the unique S segment and further suggests a site specific recombination mechanism for the inversion of one of the unique segments. As a control for the specificity of RNA polymerase binding, we have mapped binding sites on vectors pBR313 and pBR322. The location of the E. coli RNA polymerase binding sites on 2-μm DNA is discussed in relation to the DNA regions expressed in E. coli minicells.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号