首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Time-dependent biphasic regulation of Na+/K+/Cl- cotransport in rat glomerular mesangial cells
Authors:T Homma  R C Harris
Institution:Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232.
Abstract:Time-dependent regulation of loop diuretic-sensitive Na+/K+/Cl- cotransport and 3H]bumetanide binding was investigated in cultured rat glomerular mesangial cells. Angiotensin II or epidermal growth factor induced stimulation of Na+/K+/Cl- cotransport within 5 min, with a return to the control values by 30 min. Treatment of cells with phorbol 12-myristate 13-acetate (0.1 microM) (PMA), the calcium ionophore A23187 (1 microM), or the combination of 5 mM NaF and 10 microM AlCl3 produced a transient stimulation of Na+/K+/Cl- cotransport in 5-10 min to 148, 135, and 163% of control, respectively, which was followed by a progressive decrease to 34, 64, and 20% of the base-line activity, respectively, by 60 min. Exposure to cyclic 8-bromo-AMP (0.1 mM) or to forskolin (1 microM) and isobutylmethylxanthine (0.1 mM) caused a maximal inhibition of the cotransport in 5 min to 79 and 60% of control, respectively, with a subsequent gradual increase to 137 and 164% of the base-line activity, respectively, by 60 min. The effects of PMA, forskolin, and cyclic 8-bromo-AMP were concentration-dependent. In order to characterize further the alterations in the cotransport activity, binding of 3H]bumetanide was determined. Saturation binding analyses showed that the late inhibition of the cotransport by PMA and stimulation by forskolin were associated with a significant decrease and increase, respectively, in Bmax, with no significant changes in binding affinity. Correlations between changes in the cotransport activity and 3H]bumetanide binding were also observed in cells treated with cyclic 8-bromo-AMP or with NaF and AlCl3. Incubation of cells in Cl- or Na+ free solution greater than or equal to 60 min resulted in an increase in both the cotransport activity and 3H]bumetanide binding. These observations indicate that, in glomerular mesangial cells, persistent stimulation of second messengers that regulate the cotransporter induces a time-dependent, biphasic regulation of Na+/K+/Cl- cotransport and that the regulation occurring after greater than or equal to 60 min of treatment is primarily due to changes in the number of the active cotransport sites. Because long term removal of the transported ions also increases the number of active cotransport sites, these results suggest that alterations in intracellular ionic homeostasis may also mediate cotransport activity.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号