首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Conformational changes of glyceraldehyde-3-phosphate dehydrogenase induced by the binding of NAD. A unified model for positive and negative cooperativity.
Authors:J E Bell  K Dalziel
Abstract:The fluorescence of the natural coenzyme, NADH, is used to monitor the environment of the nicotinamide moiety at the active centre of rabbit muscle glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12). Changes of the fluorescence quantum yield and polarization of a small amount of NADH, totally bound by an excess of enzyme, show that at half-saturation of the oligomer with NAD a conformational change is induced which affects the active centre regions of the remaining subunits. This conformational transition is not effected by adenosine diphosphoribose, suggesting that the binding of the nicotinamide moiety of NAD to two subunits is essential for the change of tertiary structure of the remaining subunits that causes the observed changes of the fluorescence properties of the ADH "tracer probe". It is suggested that this conformational transition of the oligomer is responsible for the major decrease of affinity for NAD which occurs at half-saturation, and possibly for the activation by NAD+ of the reductive dephosphorylation reaction catalysed by the enzyme. It is also suggested, by analogy with haemoglobin, that the molecular basis of the negative cooperativity may be the creation of additional intersubunit bonds during the binding of the first two NAD molecules to the tetramer, and a change from a "relaxed" quaternary structure to a "tense" structure at half-saturation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号