首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Beta-oxidation of very-long-chain fatty acids and their coenzyme A derivatives by human skin fibroblasts
Authors:H Singh  N Derwas  A Poulos
Abstract:The beta-oxidation of lignoceric acid (C24:0), hexacosanoic acid (C26:0), and their coenzyme A derivatives was investigated in human skin fibroblast homogenates. The cofactor requirements for oxidation of lignoceric acid and hexacosanoic acid were identical but were different from their coenzyme A derivatives. For example, lignoceric acid and hexacosanoic acid oxidation was strictly ATP dependent whereas the oxidation of the corresponding coenzyme A derivatives was ATP independent. Also the rate of oxidation of coenzyme A derivatives of lignoceric acid or hexacosanoic acid was much higher compared to the free fatty acids. In patients with Zellweger's syndrome, X-linked adrenoleukodystrophy and infantile Refsum's disease, the beta-oxidation of lignoceric and hexacosanoic acids was defective whereas the oxidation of their corresponding coenzyme A derivatives was nearly normal. The results presented in this communication suggest strongly that the beta-oxidation of very-long-chain fatty acids occurs exclusively in peroxisomes. However, the coenzyme A derivatives of very-long-chain fatty acids can be oxidized in mitochondria as well as in peroxisomes. The inability of the mitochondrial system to oxidize free fatty acids may be due to its inability to convert them to their corresponding coenzyme A derivatives. Our results suggest that a specific very-long-chain fatty acyl CoA synthetase may be required for the activation of the free fatty acids and that this synthetase may be deficient in patients with Zellweger's syndrome and possibly X-linked adrenoleukodystrophy, as well. The results presented suggest that substrate specificity and the subcellular localization of the synthetase may regulate the beta-oxidation of very-long-chain fatty acids in the cell.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号