首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Voltage-imaging and simulation of effects of voltage- and agonist-activated conductances on soma-dendritic voltage coupling in cerebellar Purkinje cells
Authors:C Staub  E De Schutter  T Knöpfel
Institution:(1) Department of Theoretical Physics, Federal Institute of Technology Zürich, ETH-Hönggerberg, CH-8093 Zürich, Switzerland;(2) Born Bunge Foundation, University of Antwerp (UIA), B-2610 Antwerp, Belgium;(3) Department of Theoretical Physics, Federal Institute of Technology Zürich, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
Abstract:We investigated the spread of membrane voltage changes from the soma into the dendrites of cerebellar Purkinje cells by using voltage-imaging techniques in combination with intracellular recordings and by performing computer simulations using a detailed compartmental model of a cerebellar Purkinje cell. Fluorescence signals from single Purkinje cells in cerebellar cultures stained with the styryl dye di-4-ANEPPS were detected with a 10 × 10 photodiode array and a charge coupled device (CCD). Fluorescence intensity decreased and increased with membrane depolarization and hyperpolarization, respectively. The relation between fractional fluorescence change (DeltaF/F) and membrane potential could be described by a linear function with a slope of up to – 3%/100 mV. Hyperpolarizing and depolarizing voltage jumps applied to Purkinje cells voltage-clamped with an intrasomatic recording electrode induced dendritic dye signals, demonstrating that these voltage transients invaded the dendrites. Dye signals induced by depolarizing somatic voltage jumps were weaker in the dendrites, when compared with those induced by hyperpolarizing voltage jumps. Dendritic responses to hyperpolarizing voltage steps applied at the soma were attenuated when membrane conductance was increased by muscimol, an agonist for GABAAreceptors.Corresponding experimental protocols were applied to a previously developed detailed compartmental model of a Purkinje cell. In the model, as in the electrophysiological recordings, voltage attenuation from soma to dendrites increased under conditions where membrane conductance is increased by depolarization or by activation of GABAA receptors, respectively.We discuss how these results affect voltage clamp studies of synaptic currents and synaptic integration in Purkinje cells.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号