首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Purification and Some Characteristics of an ACTH-Sensitive Protein Kinase and Its Substrate Protein in Rat Brain Membranes
Authors:H Zwiers  P Schotman  W H Gispen
Institution:Division of Molecular Neurobiology, Rudolf Magnus Institute for Pharmacology and Laboratory of Physiological Chemistry, Medical Faculty, Institute of Molecular Biology, State University of Utrecht, Utrecht, The Netherlands
Abstract:Abstract: ACTH inhibits the phosphorylation of a rat brain membrane-bound protein (B-50). Both the protein kinase and the substrate protein could be extracted from the membranes by means of treatment with Triton X-100 in 75 mM-KCl. Using column chromatography over DEAE-cellulose and ammonium sulphate precipitation a protein fraction (ASP 55–80) enriched in endogenous B-50 phosphorylating activity was obtained. The time course of the endogenous phosphorylation of B-50 in this fraction showed a linear incorporation with time for at least 10 min and reached an estimated maximal incorporation of 0.65 mol P/mol B-50 after 60 min. The inhibition by ACTH1_24 of the B-50 protein kinase in ASP 55–80 was dose-dependent; the half-maximal effective concentration was 5 × 10−6 M, being 10 to 50 times lower as compared with intact synaptic plasma membranes (SPM). cAMP, cGMP and various endor-phins had no effect on the B-50 protein kinase. The B-50 protein kinase required both magnesium and calcium for optimal activity. Using two-dimensional electrophoresis on polyacrylamide slab gels the B-50 protein kinase and the B-50 protein could be identified and purified. The isoelectric point (IEP) of the kinase is 5.5 and the apparent molecular weight 70,000, whereas the IEP of the substrate protein B-50 is 4.5 and the apparent molecular weight 48,000. Amino acid analysis on microgram quantities of purified kinase and B-50 protein revealed basic/acidic amino acid ratios in agreement with the respective lEP's. It is speculated that the inhibition of B-50 protein kinase may be related to known modulatory effects of ACTH and related peptides on certain types of neurotransmission and behaviour.
Keywords:ACTH  Kinase  Calcium  Cyclic nucleotides  Endorphins  Phosphorylation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号