首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Expression studies of mutations underlying Taiwanese Hunter syndrome (mucopolysaccharidosis type II)
Authors:Jui-Hung Chang  Shuan-Pei Lin  Shu-Chuan Lin  Kai-Li Tseng  Chia-Ling Li  Chih-Kuang Chuang  Guey-Jen Lee-Chen
Institution:(1) Department of Life Science, National Taiwan Normal University, 88 Ting-Chou Road, Section 4, Taipei, 116, Taiwan;(2) Division of Genetics and Metabolism, Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan;(3) Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan
Abstract:Nearly 300 different mutations underlying mucopolysaccharidosis type II (MPS II) have been identified worldwide. To investigate the molecular lesions underlying Taiwanese MPS II, probands and families were identified and screened for iduronate-2-sulfatase (IDS) mutation by single-strand conformation polymorphism and DNA sequencing. Five novel and five previously reported mutations were found. Together with those previously reported, a total of 17 identified missense, small deletion, and nonsense mutations were further characterized by transient expression studies. Transfection of COS-7 cells by the mutated cDNA did not yield active enzyme, demonstrating the deleterious nature of the mutations. A 57% decrease in IDS mRNA level was seen with the 231del6 mutation. Among the 11 missense mutations examined, K347E substitution showed apparent normal maturation and targeting on immunoblot and confocal fluorescence microscopy examination. The other 10 missense mutations showed apparent normal precursor with little or reduced mature forms, indicating normal maturation but incorrect targeting of the mutant enzymes. Among the six deletion and nonsense mutations examined, 1055del12 and E521X showed abnormal maturation. The staining pattern of the truncated W267X and 1184delG proteins suggested retention within early vacuolar compartments. The mutated 231del6 and 1421delAG proteins were unstable and largely degraded. Molecular analysis of the IDS gene will clearly identify the cause of the disease within patients and allow antenatal and family studies. The further characterization of gene mutations may delineate their functional consequences on IDS activity and processing and may enable future studies of genotype–phenotype correlation to estimate a prognosis and to lead to possible therapeutic interventions.Jui-Hung Chang and Shuan-Pei Lin contributed equally to this work
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号