首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Limited mitochondrial permeabilization is an early manifestation of palmitate-induced lipotoxicity in pancreatic beta-cells
Authors:Koshkin Vasilij  Dai Feihan F  Robson-Doucette Christine A  Chan Catherine B  Wheeler Michael B
Institution:Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
Abstract:Involvement of the mitochondrial permeability transition (MPT) pore in early stages of lipotoxic stress in the pancreatic beta-cell lines MIN6 and INS-1 was the focus of this study. Both long term (indirect) and acute (direct) effects of fatty acid (FA) application on beta-cell susceptibility to Ca(2+)-induced MPT induction were examined using both permeabilized and intact beta-cells. Long term exposure to moderate (i.e. below cytotoxic) levels of the saturated FA palmitate sensitized beta-cell mitochondria to MPT induced by Ca(2+). Long term exposure to palmitate was significantly a more efficient inducer of MPT than the unsaturated FA oleate, although upon acute application both caused similar MPT activation. Application of antioxidants, inhibitors of the ceramide pathway, or modifiers of membrane fluidity did not protect beta-cell mitochondria from FA exposure. However, significant protection was provided by co-application of the unsaturated FA oleate in a phosphatidylinositol 3-kinase-dependent manner. Characterization of MPT pore opening in response to moderate palmitate treatment revealed the opening of a unique form of MPT in beta-cells as it encompassed features of both low and high conductance MPT states. Specifically, this MPT showed solute selectivity, characteristic of a low conductance MPT; however, it affected mitochondrial respiration and membrane potential in a way typical of a high conductance MPT. Activation of the full-size/high conductance form of MPT required application of high levels of FA that reduced growth and initiated apoptosis. These findings suggest that in the beta-cell, MPTs can act as both initiators of cell death and as versatile modulators of cell metabolism, depending on the mode of the MPT pore induced.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号