首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Solution, solid phase and computational structures of apicidin and its backbone-reduced analogs.
Authors:Michael Kranz  Peter John Murray  Stephen Taylor  Richard J Upton  William Clegg  Mark R J Elsegood
Institution:GlaxoSmithKline Cambridge Chemistry Laboratory, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK. michael.j.kranz@gsk.com
Abstract:The recently isolated broad-spectrum antiparasitic apicidin (1) is one of the few naturally occurring cyclic tetrapeptides (CTP). Depending on the solvent, the backbone of 1 exhibits two gamma-turns (in CH(2)Cl(2)) or a beta-turn (in DMSO), differing solely in the rotation of the plane of one of the amide bonds. In the X-ray crystal structure, the peptidic C==Os and NHs are on opposite sides of the backbone plane, giving rise to infinite stacks of cyclotetrapeptides connected by three intermolecular hydrogen bonds between the backbones. Conformational searches (Amber force field) on a truncated model system of 1 confirm all three backbone conformations to be low-energy states. The previously synthesized analogs of 1 containing a reduced amide bond exhibit the same backbone conformation as 1 in DMSO, which is confirmed further by the X-ray crystal structure of a model system of the desoxy analogs of 1. This similarity helps in explaining why the desoxy analogs retain some of the antiprotozoal activities of apicidin. The backbone-reduction approach designed to facilitate the cyclization step of the acyclic precursors of the CTPs seems to retain the conformational preferences of the parent peptide backbone.
Keywords:cyclic tetrapeptide  cyclization  peptide synthesis  conformational analysis  peptide NMR  peptide X ray
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号