Carotenoid uptake and secretion by CaCo-2 cells: beta-carotene isomer selectivity and carotenoid interactions |
| |
Authors: | During Alexandrine Hussain M Mahmood Morel Diane W Harrison Earl H |
| |
Affiliation: | Human Nutrition Research Center, United States Department of Agriculture, Beltsville, Maryland 20705, USA. during@bhnrc.arsusda.gov |
| |
Abstract: | In presence of oleate and taurocholate, differentiated CaCo-2 cell monolayers on membranes were able to assemble and secrete chylomicrons. Under these conditions, both cellular uptake and secretion into chylomicrons of beta-carotene (beta-C) were curvilinear, time-dependent (2-16 h), saturable, and concentration-dependent (apparent K(m) of 7-10 microM) processes. Under linear concentration conditions at 16 h incubation, the extent of absorption of all-trans beta-C was 11% (80% in chylomicrons), while those of 9-cis- and 13-cis-beta-C were significantly lower (2-3%). The preferential uptake of the all-trans isomer was also shown in hepatic stellate HSC-T6 cells and in a cell-free system from rat liver (microsomes), but not in endothelial EAHY cells or U937 monocyte-macrophages. Moreover, extents of absorption of alpha-carotene (alpha-C), lutein (LUT), and lycopene (LYC) in CaCo-2 cells were 10%, 7%, and 2.5%, respectively. Marked carotenoid interactions were observed between LYC/beta-C and beta-C/alpha-C. The present results indicate that beta-C conformation plays a major role in its intestinal absorption and that cis isomer discrimination is at the levels of cellular uptake and incorporation into chylomicrons. Moreover, the kinetics of cellular uptake and secretion of beta-C, the inhibition of the intestinal absorption of one carotenoid by another, and the cellular specificity of isomer discrimination all suggest that carotenoid uptake by intestinal cells is a facilitated process. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|