首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Functional diversification of acyl-coenzyme A oxidases in jasmonic acid biosynthesis and action
Authors:Schilmiller Anthony L  Koo Abraham J K  Howe Gregg A
Institution:Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA.
Abstract:The biosynthesis of jasmonic acid (JA) in plant peroxisomes requires the action of acyl-coenzyme A oxidase (ACX). Among the five expressed members (ACX1-5) of the ACX gene family in Arabidopsis (Arabidopsis thaliana), only ACX1 is known to serve a role in JA production. Here, we used transgenic promoter-reporter lines to show that ACX1 is highly expressed in mature and germinating pollen, stem epidermal cells, and other tissues in which jasmonate-signaled processes occur. Wound-induced JA accumulation was reduced in a mutant that is defective in ACX1 and was abolished in a mutant that is impaired in both ACX1 and its closely related paralog, ACX5. The severe JA deficiency in acx1/5 double mutants was accompanied by decreased resistance to the leaf-eating insect Trichoplusia ni. The double mutant also showed reduced pollen viability and fecundity. Treatment of acx1/5 plants with JA restored both protection against T. ni larvae and normal seed set. Unexpectedly, acx1/5 plants accumulated JA in response to infection by the necrotrophic fungal pathogen Alternaria brassicicola. In contrast to mutants that are impaired in jasmonate perception or early steps of the JA biosynthetic pathway, acx1/5 plants maintained resistance to A. brassicicola infection. These results indicate that ACX1/5-mediated JA synthesis is essential for resistance to chewing insects and male reproductive function and further suggest that other ACX isozymes contribute to JA production in response to A. brassicicola challenge. Thus, different types of biotic stress may induce JA synthesis via distinct enzymatic routes.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号