首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Carbon-13 nuclear-magnetic-resonance spectra of adenine cyclonucleosides and their phosphates. Effects of neighboring groups for elucidation of fine structure of nucleosides and nucleotides.
Authors:S Uesugi  S Tanaka  M Ikehara
Abstract:Carbon-13 nuclear magnetic resonance spectra of adenine cyclonucleosides, which have a fixed glycosidic conformation in an anti range, and their isopropylidene and phosphate esters are reported; those of 9-beta-D-arabinofuranosyladenine and its 5'-phosphate are also presented. The chemical shifts of the base carbons are affected not only by the bridging atom but also by the position of the bridged sugar carbon which determine the planarity of the third ring formed by cyclization between the base and the sugar. The effects of glycosidic conformation on the sugar-carbon chemical shifts are discussed by comparison of the data for 8:5'-cycloadenosines with the data for adenosine and its 8-substituted derivatives. The effects of a 2'-oxygen on sugar-carbon chemical shifts have been examined by comparing the data for 2'-deoxyadenosine, arabinosyladenine and 8:2'-anhydro-8-oxy-9-beta-D-arabinofuranosyladenine. The effects of phosphomonoester groups on base and sugar carbon resonances have been examined and it is noted that these groups cause downfield shifts for C-8 of all cyclonucleotides. Data for the 3':5'-cyclic monophosphate derivative of 8:2'-anhydro-8-thio-9-beta-D-arabinofuranosyladenine suggest that the previous assignments of C-4' and C-3' for nucleoside 3':5'-cyclic monophosphates must be reversed. According to the reversed assignments, it seems that C-3' and C-5' show moderate downfield shifts and C-4' shows a marked upfield shift.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号