Approaches to the targeted intracellular delivery of photosensitizers in order to enhance their efficacy and cell specificity |
| |
Authors: | Sobolev A S Rozenkrants A A Giliazova D G |
| |
Affiliation: | Institute of Gene Biology, Russian Academy of Sciences, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia. |
| |
Abstract: | The main physicochemical properties of photosensitizers used in the photodynamic therapy of cancer and their subcellular distribution after in vitro and in vivo administration were analyzed. It was shown that the effect of photosensitizers is realized at very short distances from the sites of their intracellular localization, and the sensitivities of different cellular compartments to the photocytotoxic action of photosensitizers are different. The necessity of intranuclear delivery of photosensitizers into the nuclei of target cells in order to enhance their efficacy and cell specificity was shown and the available approaches to the targeted delivery of photosensitizers were analyzed. The mechanisms of nucleocytoplasmic transport through the nuclear pore complex, which can be used for the delivery of photosensitizers inward the nucleus, are reviewed. Different modular transporters for photosensitizers comprising (i) a ligand module, which binds to an internalizable receptor overexpressed on the target cells, (ii) an intracellular localization signal, (iii) a carrier module, and (iv) an endosomolytic module were characterized. All these modules were shown to be fully functional within the chimeric polypeptide and the polypeptide as a whole. A significant enhancement of photocytotoxicity and cell specificity of photosensitizers delivered by these transporters were demonstrated. The transporters described represent a new generation of pharmaceuticals which can be widely used for targeted drug delivery. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|