首页 | 本学科首页   官方微博 | 高级检索  
     

高分辨魔角旋转核磁共振和主成分分析研究人类低级星形细胞瘤和脑膜瘤的代谢组特征
引用本文:陈文学,楼海燕,张红萍,聂秀,向云,杨永霞,吴光耀,漆剑频,岳勇,雷皓,唐惠儒,邓风. 高分辨魔角旋转核磁共振和主成分分析研究人类低级星形细胞瘤和脑膜瘤的代谢组特征[J]. 生物化学与生物物理进展, 2008, 35(10): 1142-1153
作者姓名:陈文学  楼海燕  张红萍  聂秀  向云  杨永霞  吴光耀  漆剑频  岳勇  雷皓  唐惠儒  邓风
作者单位:1. 中国科学院武汉物理与数学研究所,波谱与原子分子物理国家重点实验室,武汉,430071;中国科学院研究牛院,北京,100049
2. 华中科技人学吲济医学院,同济医院,武汉,430022;浙江大学医学院附属第一医院,杭州,310003
3. 武汉人学医学院,中南医院,武汉,430071
4. 华中科技大学同济医学院,协和医院,武汉,430022
5. 中国科学院武汉物理与数学研究所,波谱与原子分子物理国家重点实验室,武汉,430071;武汉人学医学院,中南医院,武汉,430071
6. 华中科技人学吲济医学院,同济医院,武汉,430022
7. 中国科学院武汉物理与数学研究所,波谱与原子分子物理国家重点实验室,武汉,430071
基金项目:国家自然科学基金,中国科学院"百人计划" 
摘    要:采用高分辨魔角旋转核磁共振(HRMAS ^1H NMR)技术结合主成分分析(PCA)方法研究了39例人体脑肿瘤组织的代谢组特征.39例肿瘤样本分别来自39个脑肿瘤患者,包括15例低级星形细胞瘤,13例纤维型脑膜瘤和11例过渡型脑膜瘤.核磁共振波谱分析结果表明,脑肿瘤组织的代谢组中丰要含有脂肪酸、乳酸、胆碱代谢物(如胆碱、磷酸胆碱和甘油磷酸胆碱)、氯基酸(如丙氨酸、谷氨酸、谷氮酰胺、牛磺酸)、N-乙酰天门冬氨酸(NAA)和谷胱甘肽等代谢物.通过对核磁共振谱进行主成分分析(PCA),发现低级星形细胞瘤和脑膜瘤的代谢组之间具有明显的差异,而在过渡型和纤维型两个亚类脑膜瘤之间该差别相对较小.与脑膜瘤相比,低级星形细胞瘤中甘油磷酸胆碱、磷酸胆碱、肌醇与肌酸的含量较高,而丙氨酸、谷氨酸、谷氨酰胺、谷胱甘肽和牛磺酸的含量较低.NAA的含量在低级星形细胞瘤中尽管较低但能观察到,而脑膜瘤中却未发现NAA的信号.结果衷明,HRMAS ^1H NMR和多变量统计分析相结合的组织代谢组学方法,不仅能有效区分不同类型的脑肿瘤,而且还可以为脑肿瘤提供丰富的代谢组信息,这些信息对研究肿瘤发生发展的机制具有潜在的意义.

关 键 词:脑肿瘤  胶质瘤  星形细胞瘤  脑膜瘤  高分辨魔角旋转核磁共振  模式识别  统计分析
收稿时间:2008-01-28
修稿时间:2008-03-24

Metabonomic Characterization of The Low-grade Human Astrocytomas and Meningiomas Using Magic-angle Spinning 1H Nuclear Magnetic Resonance Spectroscopy and Principal Component Analysis
CHEN Wen-Xue,LOU Hai-Yan,ZHANG Hong-Ping,NIE Xiu,XIANG Yun,YANG Yong-Xi,WU Guang-Yao,QI Jian-Ping,YUE Yong,LEI Hao,TANG Hui-Ru and DENG Feng. Metabonomic Characterization of The Low-grade Human Astrocytomas and Meningiomas Using Magic-angle Spinning 1H Nuclear Magnetic Resonance Spectroscopy and Principal Component Analysis[J]. Progress In Biochemistry and Biophysics, 2008, 35(10): 1142-1153
Authors:CHEN Wen-Xue  LOU Hai-Yan  ZHANG Hong-Ping  NIE Xiu  XIANG Yun  YANG Yong-Xi  WU Guang-Yao  QI Jian-Ping  YUE Yong  LEI Hao  TANG Hui-Ru  DENG Feng
Affiliation:State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics,The Chinese Academy of Sciences, Wuhan 430071, China;Graduate School of The Chinese Academy of Sciences, Beijing 100049, China;Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China;Zhongnan Hospital, Medical College, Wuhan University, Wuhan 430071, China;Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics,The Chinese Academy of Sciences, Wuhan 430071, China;Graduate School of The Chinese Academy of Sciences, Beijing 100049, China;State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics,The Chinese Academy of Sciences, Wuhan 430071, China;Graduate School of The Chinese Academy of Sciences, Beijing 100049, China;State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics,The Chinese Academy of Sciences, Wuhan 430071, China;Zhongnan Hospital, Medical College, Wuhan University, Wuhan 430071, China;Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics,The Chinese Academy of Sciences, Wuhan 430071, China;State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics,The Chinese Academy of Sciences, Wuhan 430071, China;State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics,The Chinese Academy of Sciences, Wuhan 430071, China;State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics,The Chinese Academy of Sciences, Wuhan 430071, China
Abstract:Metabolic characteristics of 39 human brain tumor tissues, including 15 astrocytomas, 13 fibroblastic meningiomas and 11 transitional meningiomas from 39 individual patients, have been studied using high resolution magic-angle spinning (HRMAS) 1H NMR spectroscopy in conjunction with principal component analysis (PCA). With rich metabolite information, 1H NMR spectra showed that the tumor-tissue metabonome was dominated by lipids, lactate, myo-inositol, creatine, choline metabolites such as choline, phosphocholine and glycerophosphocholine, amino acids such as alanine, glutamate, glutamine, taurine, N-acetyl-aspartate and glutathione. PCA of the tumor NMR spectra clearly showed metabonomic differences between low-grade astrocytomas and meningiomas whereas such differences were more moderate between fibroblastic and transitional meningiomas. Compared with meningiomas, the low-grade astrocytomas had higher levels of glycerophosphocholine, phosphocholine, myo-inositol and creatine but lower levels of alanine, glutamate, glutamine, glutathione and taurine. The N-acetyl-aspartate level was low but detectable in low-grade astrocytomas whereas it was not detectable in meningiomas. It is concluded that tissue metabonomics technology consisting of HRMAS 1H NMR spectroscopy and multivariate data analysis (MVDA) offers a useful tool (1) for distinguishing different types of brain tumors, (2) for providing the metabolic information for human brain tumors, which are potentially useful for understanding biochemistry of tumor progression.
Keywords:human brain tumor  glioma  astrocytomas  meningioma  high resolution magic-angle spinning (HRMAS) nuclearmagnetic resonance spectroscopy  pattern recognition  statistical analysis
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《生物化学与生物物理进展》浏览原始摘要信息
点击此处可从《生物化学与生物物理进展》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号