首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Activated macrophages mediate interferon-independent inhibition of herpes simplex virus
Authors:S S Morse  P S Morahan
Institution:1. Department of Microbiology, Rutgers University, Piscataway, New Jersey 08854 U.S.A.;2. Department of Microbiology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298 U.S.A.
Abstract:Activated macrophages exhibit extrinsic antiviral activity (inhibition of virus replication in other cells) which may involve mechanisms similar to macrophage antitumor activity or macrophage-mediated immunosuppression. Peritoneal macrophages elicited in mice by Corynebacterium parvum vaccine suppressed the growth of herpes simplex virus (HSV) in infected cells by an interferon-independent mechanism. This was demonstrated by expression of activity against HSV-infected xenogeneic (Vero) cells. Culture supernatant fluids also did not mediate antiviral activity, and did not contain detectable levels of interferon (< 3 IU/ml). Moreover, antiviral activity was not affected by the presence of anti-mouse interferon IgG. Antiviral activity was expressed at 12–16 hr after infection, at the end of the first cycle of virus replication. Cell contact was required for optimal activity. No enhanced adsorption or phagocytosis of HSV by C. parvum macrophages could be detected nor was macrophage cytotoxicity responsible for the activity. Cytotoxicity (51Cr release) by macrophages for virus infected cells was low (< 6% specific cytotoxicity), and was not significantly higher with C. parvum macrophages than with resident macrophage controls. Although C. parvum macrophages were not cytotoxic at the macrophage-host cell ratio employed, they did significantly inhibit uptake of 3H]leucine by the host Vero cells. This suggests that inhibition of host cell metabolism by the macrophage, similar to macrophage immunosuppression, may be responsible for the antiviral activity in this system.
Keywords:To whom all correspondence should be sent at Department of Microbiology  Rutgers University  Nelson Laboratories  Box 1059  Piscataway  N  J  08854  
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号