首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Depletion of deoxyribonucleoside triphosphate pools in tumor cells by nitric oxide
Authors:Roy Béatrice  Guittet Olivier  Beuneu Claire  Lemaire Geneviève  Lepoivre Michel
Institution:UMR CNRS 8619, IBBMC, Université de Paris XI, F-91405 Orsay Cedex, France.
Abstract:Nitric oxide displays pro- and anti-tumor activities, prompting further studies to better understand its precise role. Nitric oxide inhibits ribonucleotide reductase (RnR), the limiting enzyme for de novo dNTP synthesis. We report here the first detailed analysis of dNTP variations induced in tumor cells by NO. NO prodrugs induced a depletion in dNTP pools and an activation of the pyrimidine salvage pathway, as did hydroxyurea, the prototypic RnR inhibitor. In the presence of dipyridamole, which blocked salvaged dNTP synthesis, depletion of dNTP pools was also observed in tumor cells cocultured with macrophages expressing the high-output iNOS activity. This effect was rapid, reversible, blocked by NO scavengers, and cGMP independent. It was quantitatively correlated to iNOS activity. In the absence of dipyridamole, NO still induced a decrease in dATP concentration in tumor cells cocultured with macrophages, whereas surprisingly, concentrations of dCTP and dTTP expanded considerably, resulting in a strong imbalance in dNTP pools. NO prodrugs did not cause such an increase in pyrimidine dNTP, suggesting that pyrimidine nucleosides were released by NO-injured macrophages. Altered dNTP levels have been reported to promote mutagenesis and apoptosis. It is suggested that abnormal changes in dNTP pools in tumors might contribute to NO-dependent toxicity.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号