首页 | 本学科首页   官方微博 | 高级检索  
     


Tetramerisation of alpha-latrotoxin by divalent cations is responsible for toxin-induced non-vesicular release and contributes to the Ca(2+)-dependent vesicular exocytosis from synaptosomes
Authors:Ashton A C  Rahman M A  Volynski K E  Manser C  Orlova E V  Matsushita H  Davletov B A  van Heel M  Grishin E V  Ushkaryov Y A
Affiliation:Biochemistry Department, Imperial College, Exhibition Road, SW7 2AY, London, UK.
Abstract:A novel procedure of alpha-latrotoxin (alpha LTX) purification has been developed. Pure alpha LTX has been demonstrated to exist as a very stable homodimer. Such dimers further assemble into tetramers, and Ca(2+), Mg(2+) or higher toxin concentrations facilitate this process. However, when the venom is treated with EDTA, purified alpha LTX loses the ability to tetramerise spontaneously; the addition of Mg(2+) or Ca(2+) restores this ability. This suggests that alphaLTX has some intrinsically bound divalent cation(s) that normally support its tetramerisation. Single-particle cryoelectron microscopy and statistical image analysis have shown that: 1) the toxin has a non-compact, branching structure; 2) the alpha LTX dimers are asymmetric; and 3) the tetramers are symmetric and have a 25 A-diameter channel in the centre. Both alpha LTX oligomers bind to the same receptors in synaptosomes and rat brain sections. To study the effects of the dimers and tetramers on norepinephrine release from rat cerebrocortical synaptosomes, we used the EDTA-treated and untreated toxin preparations. The number of tetramers present in a preparation correlates with alpha LTX pore formation, suggesting that the tetramers are the pore-forming species of alpha LTX. The toxin actions mediated by the pore include: 1) Ca(2+) entry from the extracellular milieu; and 2) passive efflux of neurotransmitters via the pore that occurs independently of Ca(2+). The Ca(2+)-dependent alpha LTX-stimulated secretion conforms to all criteria of vesicular exocytosis but also depends upon intact intracellular Ca(2+) stores and functional phospholipase C (PLC). The Ca(2+)-dependent effect of the toxin is stronger when dimeric alpha LTX is used, indicating that higher receptor occupancy leads to its stronger activation, which contributes to stimulation of neuroexocytosis. In contrast, the Ca(2+)-independent release measured biochemically represents leakage of neurotransmitters through the toxin pore. These results are discussed in relation to the previously published observations.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号