首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Use of a D-optimal design with constrains to quantify the effects of the mixture of sodium,potassium, calcium and magnesium chloride salts on the growth parameters of <Emphasis Type="Italic">Saccharomyces cerevisiae</Emphasis>
Authors:J Bautista-Gallego  F N Arroyo-López  A Chiesa  M C Durán-Quintana  A Garrido-Fernández
Institution:Departamento de Biotecnología de Alimentos, Instituto de la Grasa, Avda Padre Garcia Tejero no. 4, 41012, Seville, Spain. joaquinbg@ig.csic.es
Abstract:The combined effect of NaCl, KCl, CaCl(2), and MgCl(2) on the water activity (a (w)) and the growth parameters of Saccharomyces cerevisiae was studied by means of a D-optimal mixture design with constrains (total salt concentrations < or = 9.0%, w/v). The a (w) was linearly related to the concentrations of the diverse salts; its decrease, by similar concentrations of salts, followed the order NaCl > CaCl(2) > KCl > MgCl(2), regardless of the reference concentrations used (total absence of salts or 5% NaCl). The equations that expressed the maximum specific growth (mu (max)), lag phase duration (lambda), and maximum population reached (N (max)) showed that the values of these parameters depended on linear effects and two-way interactions of the studied chloride salts. The mu (max) decreased as NaCl and CaCl(2) increased (regardless of the presence or not of previous NaCl); however, in the presence of a 5% NaCl, a further addition of KCl and MgCl(2) markedly increased mu (max). The lambda was mainly affected by MgCl(2) and the interactions NaCl x CaCl(2) and CaCl(2) x MgCl(2). The further addition of NaCl and CaCl(2) to a 5% NaCl medium increased the lag phase while KCl and MgCl(2) had negligible or slightly negative effect, respectively. N (max) was mainly affected by MgCl(2) and its interactions with NaCl, KCl, and CaCl(2); MgCl(2) stimulated N (max) in the presence of 5% NaCl while KCl, NaCl, and CaCl(2) had a progressive decreasing effect. These results can be of interest for the fermentation and preservation of vegetable products, and foods in general, in which this yeast could be present.
Keywords:Sodium chloride  Magnesium chloride  Potassium chloride  Calcium chloride  Mixture design  Food fermentation  Food preservation            Saccharomyces cerevisiae
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号