首页 | 本学科首页   官方微博 | 高级检索  
     


An oligomeric form of E. coli UvrD is required for optimal helicase activity.
Authors:J A Ali  N K Maluf  T M Lohman
Affiliation:Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA.
Abstract:Pre-steady-state chemical quenched-flow techniques were used to study DNA unwinding catalyzed by Escherichia coli UvrD helicase (helicase II), a member of the SF1 helicase superfamily. Single turnover experiments, with respect to unwinding of a DNA oligonucleotide, were used to examine the DNA substrate and UvrD concentration requirements for rapid DNA unwinding by pre-bound UvrD helicase. In excess UvrD at low DNA concentrations (1 nM), the bulk of the DNA is unwound rapidly by pre-bound UvrD complexes upon addition of ATP, but with time-courses that display a distinct lag phase for formation of fully unwound DNA, indicating that unwinding occurs in discrete steps, with a "step size" of four to five base-pairs as previously reported. Optimum unwinding by pre-bound UvrD-DNA complexes requires a 3' single-stranded (ss) DNA tail of 36-40 nt, whereas productive complexes do not form readily on DNA with 3'-tail lengths
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号