The presence of a low molecular weight acid phosphatase in liver tissue that cannot be demonstrated with the histochemical substrate naphthol AS-BI phosphate |
| |
Authors: | A. E. F. H. Meijer C. M. van der Loos P. W. Schuurhuizen |
| |
Affiliation: | (1) Laboratory of Pathological Anatomy, Histochemical and Biochemical Section, Wilhelmina Gasthuis, University of Amsterdam, Eerste Helmersstraat 104, NL-1054 EG Amsterdam, The Netherlands |
| |
Abstract: | Summary Three distinct isoenzymes of acid phosphatase have been separated from extracts of liver tissue of rats by gel filtration. These isoenzymes have molecular weights of 180,000±35,000; 74,000±11,000 and 13,000±2,500. High molecular weight isoenzymes and a low molecular weight isoenzyme of acid phosphatase (molecular weight 13,000±2,100) were also present in extracts of normal human and mouse liver tissue, and of pathologically altered liver tissue of mice in which the activity of acid phosphatase was strongly increased as a result of intraperitoneal injections of dextran solutions. Activity of acid phosphatase was determined with three substrates. The isoenzymes showed different conversion rates for the three substrates. The high molecular weight isoenzymes split the substrates 4-methylumbelliferyl phosphate, p-nitrophenyl phosphate and naphthol AS-BI phosphate. The activity was sensitive to the inhibitors fluoride and L(+)tartrate. In the pathologically altered liver tissue, which had stored dextran, the activity of these isoenzymes was strongly increased. The low molecular weight isoenzyme split 4-methylumbelliferyl phosphate and p-nitrophenyl phosphate but not naphthol AS-BI phosphate. Therefore this isoenzyme cannot be demonstrated with histochemical techniques using the substrate naphthol AS-BI phosphate. In contrast to the activity of the high molecular isoenzymes the activity of the low molecular isoenzyme was not changed in the pathologically altered liver tissue of mice and was not sensitive to the inhibitors fluoride and L(+)tartrate.This study was supported by a grant from the Prinses Beatrix Fonds, s'Gravenhage |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|