首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Potential inplications of endogenous aldehydes in beta-amyloid misfolding, oligomerization and fibrillogenesis
Authors:Chen Kun  Maley Jason  Yu Peter H
Institution:Neuropsychiatry Research Unit, Department of Psychiatry, Saskatchewan Structural Sciences Centre, University of Saskatchewan, Saskatoon, Canada.
Abstract:Aldehydes are capable of inducing protein cross-linkage. An increase in aldehydes has been found in Alzheimer's disease. Formaldehyde and methylglyoxal are produced via deamination of, respectively, methylamine and aminoacetone catalyzed by semicarbazide-sensitive amine oxidase (SSAO, EC 1.4.3.6. The enzyme is located on the outer surface of the vasculature, where amyloidosis is often initiated. A high SSAO level has been identified as a risk factor for vascular disorders. Serum SSAO activity has been found to be increased in Alzheimer's patients. Malondialdehyde and 4-hydroxynonenal are derived from lipid peroxidation under oxidative stress, which is also associated with Alzheimer's disease. Aldehydes may potentially play roles in beta-amyloid aggregation related to the pathology of Alzheimer's disease. In the present study, thioflavin-T fluorometry, dynamic light scattering, circular dichroism spectroscopy and atomic force microscopy were employed to reveal the effect of endogenous aldehydes on beta-amyloid at different stages, i.e. beta-sheet formation, oligomerization and fibrillogenesis. Formaldehyde, methylglyoxal and malondialdehyde and, to a lesser extent, 4-hydroxynonenal are not only capable of enhancing the rate of formation of beta-amyloid beta-sheets, oligomers and protofibrils but also of increasing the size of the aggregates. The possible relevance to Alzheimer's disease of the effects of these aldehydes on beta-amyloid deposition is discussed.
Keywords:Alzheimer's disease  β-amyloid oligomerization  atomic force microscopy  formaldehyde  methylglyoxal  semicarbazide-sensitive amine oxidase
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号