首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Phase behavior and bilayer properties of fatty acids: hydrated 1:1 acid-soaps
Authors:D P Cistola  D Atkinson  J A Hamilton  D M Small
Abstract:The physical properties in water of a series of 1:1 acid-soap compounds formed from fatty acids and potassium soaps with saturated (10-18 carbons) and omega-9 monounsaturated (18 carbons) hydrocarbon chains have been studied by using differential scanning calorimetry (DSC), X-ray diffraction, and direct and polarized light microscopy. DSC showed three phase transitions corresponding to the melting of crystalline water, the melting of crystalline lipid hydrocarbon chains, and the decomposition of the 1:1 acid-soap compound into its parent fatty acid and soap. Low- and wide-angle X-ray diffraction patterns revealed spacings that corresponded (with increasing hydration) to acid-soap crystals, hexagonal type II liquid crystals, and lamellar liquid crystals. The lamellar phase swelled from bilayer repeat distances of 68 (at 45% H2O) to 303 A (at 90% H2O). Direct and polarized light micrographs demonstrated the formation of myelin figures as well as birefringent optical textures corresponding to hexagonal and lamellar mesophases. Assuming that 1:1 potassium hydrogen dioleate and water were two components, we constructed a temperature-composition phase diagram. Interpretation of the data using the Gibbs phase rule showed that, at greater than 30% water, hydrocarbon chain melting was accompanied by decomposition of the 1:1 acid-soap compound and the system changed from a two-component to a three-component system. Comparison of hydrated 1:1 fatty acid/soap systems with hydrated soap systems suggests that the reduced degree of charge repulsion between polar groups causes half-ionized fatty acids in excess water to form bilayers rather than micelles.(ABSTRACT TRUNCATED AT 250 WORDS)
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号