首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Role of glutathione in detoxification of metal(loid)s by Saccharomyces cerevisiae
Authors:MM Gharieb  GM Gadd
Institution:Botany Department, Faculty of Science, Menoufia University, Shebein El-Koom, Egypt.
Abstract:Cellular glutathione (GSH) was implicated in tolerance to potentially toxic metal(loid)s using two strains of Saccharomyces cerevisiae, a wild-type (sigma 1278b) and a GSH-deficient mutant strain (gshA-2). Both yeast strains exhibited no significant difference in tolerance to tellurite, zinc, cobalt, copper, manganese, nickel and chromate. There was no marked influence of glutathione on the accumulation of Te, Co, Cu, and Mn, although the absence of cellular glutathione significantly increased the cellular content of Zn and Ni, but greatly decreased Cr content without significant alteration of tolerance. These results indicated the independence of cellular glutathione activity from tolerance to Te, Zn, Co, Cu, Mn, Ni, and Cr. However, involvement of glutathione in Zn, Ni and Cr uptake is possible. The glutathione-deficient strain displayed a high sensitivity to selenite and cadmium in comparison to the wild-type strain of S. cerevisiae. The minimum inhibitory concentrations of Se and Cd for the glutathione-deficient strain were 980 +/- 13 and 32 +/- 4 microM, respectively, whereas the wild strain tolerated up to 4080 +/- 198 microM Se and 148 +/- 5 microM Cd. A relationship between tolerance and reduced cellular content of both Se and Cd was also shown: the mutant strain accumulated approximately three-fold more Se and two-fold more Cd than that accumulated by the wild-type strain. This suggests an influence of GSH on cellular uptake of Se and Cd, and also directly confirms the protective action of such a cellular thiol compound against Se and Cd toxicity.
Keywords:glutathione  metal resistance  metalloids  Saccharomyces cerevisiae
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号